Introduction To R Programming

R cbjects and functions

by Martin Frigaard

Written: September 30 2021
Updated: November 30 2021

https://github.com/mijfrigaard/csuc-data-journalism

https://jhelvy.github.io/lexis/index.html#what-does-%CE%BB%CE%AD%CE%BE%CE%B9%CF%82-mean

R Programming

R Is a versatile language for data wrangling, visualization, and modeling

2 /60

https://github.com/mijfrigaard/csuc-data-journalism

Resources

Link to slides

https://mjfrigaard.github.io/csuc-data-journalism/slides.html

Link to exercises

https://mjfrigaard.github.io/csuc-data-journalism/lessons-exercises.html

3 /60

https://github.com/mijfrigaard/csuc-data-journalism

https://mjfrigaard.github.io/csuc-data-journalism/slides.html
https://mjfrigaard.github.io/csuc-data-journalism/lessons-exercises.html

Getting Started

Image credit: - 1,

4 /60

https://github.com/mijfrigaard/csuc-data-journalism

https://www.r-project.org/

Installing R

Install R from the Comprehensive R Archive Network (CRAN):

https://cran.r-project.org/

Download and Install R

Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of
these versions of R:

CRAN ¢ Download R for Linux
Mirrors ¢ Download R for (Mac) OS X
What's new? ¢ Download R for Windows
Task Views
Search R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above.
Source Code for all Platforms
About R
R Homepage 'Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The
The R Journal sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!
iiojs’twar € o The latest release (2020-06-22, Taking Off Again) R-4.0.2 tar.gz, read what's new in the latest version.
ources
R Binaries « Sources of R alpha and beta releases (daily snapshots, created only in time periods before a planned release).
Packages
Other ¢ Daily snapshots of current patched and development versions are available here. Please read about new features and bug fixes

before filing corresponding feature requests or bug reports.
Documentation

Manuals « Source code of older versions of R is available here.
FAQs
Contributed ¢ Contributed extension packages

Questions About R

¢ If you have questions about R like how to download and install the software, or what the license terms are, please read our
answers to frequently asked questions before you send an email.

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/

Download RStudio

https://rstudio.com/products/rstudio/download/

oS Download Size SHA-256
Windows 10/8/7 & RStudio-1.3.1093.exe 171.62MB 62b9%e60a
mac0S 10.13+ X RStudio-1.3.1093.dmg 148.66 MB bdc4d3ad
Ubuntu 16 X rstudio-1.3.1093-amd64.deb 124.33 MB 72£05048
Ubuntu 18/Debian 10 X rstudio-1.3.1093-amd64.deb 126.80 MB ££222177
Fedora 19/Red Hat 7 X, rstudio-1.3.1093-x86_64.rpm 146.96 MB edlf6efs
Fedora 28/Red Hat 8 X rstudio-1.3.1093-x86_64.rpm 151.05MB 01a978£3
Debian 9 3 rstudio-1.3.1093-amd64.deb 127.00 MB a747£9£f9
SLES/OpenSUSE 12 &, rstudio-1.3.1093-x86_64.rpm 119.43MB 5016cbct
OpenSUSE 15 X, rstudio-1.3.1093-x86_64.rpm 128.40 MB cfd47e32d

6 /60

https://github.co jfri csuc-data-journalism

https://rstudio.com/products/rstudio/download/

Or use RStudio.Cloud

https://rstudio.cloud/

QStUdIO ClOUd Log In Sign Up

RStudio Cloud

Do, share, teach and learn data science

GET STARTED FOR FREE ALREADY A USER? LOG IN

If you already have an RStudio shinyapps.io account, you can log in using your existing credentials.

/ /| 60

https://github.com/mijfrigaard/csuc-data-journalism

https://rstudio.cloud/

R Console

II

Q~

R version 4.0.2 (2020-06-22) -- "Taking Off Again"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl?7.0@ (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, "help(D)' for on-line help, or
"help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

[R.app GUI 1.72 (7847) x86_64-apple-darwinl?.Q]

The R Console

> |

8 /60

https://github.com/mijfrigaard/csuc-data-journalism

00 RStudio

Q -x® =2 HEH = Go to file/function - Addins ~ R] Project: (None) ~

@7 Untitled1 = Console Terminal Jobs =]
| Source on Save = O /7~ ¢ % Run ®= % Source =~ ~/R/

R version 4.0.2 (2020-06-22) -- "Taking Off Again"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

The RStudio IDE

>
1:1 (Top Level) = R Script =
Environment History Connections Tutorial = Files Plots Packages Help Viewer =0
<% =] E2” Import Dataset ~ s List ~ - | @ = 6 Refresh Help Topic
R -~ h Global Environment ~ Home « Find in Topic

R R Resources
Environment is empty

Learning R Online
CRAN Task Views
R on StackOverflow
Getting Help with R

Manuals

@ Rstudio

RStudio IDE Support
RStudio Community Forum
RStudio Cheat Sheets
RStudio Tip of the Day
RStudio Packages

RStudio Products

9 /60

https://github.co jfrigaard/csuc-data-j

Running R Commands

You can run R commands in the Console by entering them after the > operator (see
example in R below)

[print(”Hello World")]

[1] "Hello World"

10 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Running R Commands

You can also run them in R scripts (see example in RStudio below)

00 RStudio
O - xR P~ .| Go to file/function ~ Addins ~ R] Project: (None) ~
@ Untitled1* Console Terminal Jobs
: Source on Save A A~k = Run %% 9§ Source ~ ~/R/
; rrl”t("HEllO World™) R version 4.0.2 (2020-06-22) -- "Taking Off Again”

Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> print("Hello World")
[1] "Hello World"
> |

2:1 (Top Level) = R Script =

11/ 60

https://github.co jfri csuc-data-journalism

R Syntax

The R syntax is comprised of two major elements:

Functions Objects

Functions perform operations: calculate Objects hold information: a collection of
a mean, build a table, create a graph, numbers, dates, words, models results,

etc. etc.

12 /| 60

https://github.com/mijfrigaard/csuc-data-journalism

We use functions to perform operations on
objects

13 /60

https://github.com/mijfrigaard/csuc-data-journalism

Example: create a vector of numbers

The standard assignment operator in R is <—. We can use this in combination with c ()
to create an object x, which contains five numbers (1, 3, 5, 7, 9).

x <— c(1, 3, 5, 7, 9)]

Place x inside print () to print x to the console

x <- c(1, 3, 5, 7, 9)
print(x)

NOTE: We can also use the = and move —> to the end of the expression, but this is not
recommended

14 / 60

https://github.com/mijfrigaard/csuc-data-journalism

R Syntax: functions

x <— c(1, 3,5, 7, 9)
print(x)

|

[1] 13579

In the example above, we've created object x, but what are <—and c()?

We can check this by passing them both in backticks to the class () function below.

~—

class(<-")

|

[1] "function"

~——

class('c’)

e

—

https://github.com/mijfrigaard/csuc-data-journalism

Functions in R

Functions perform operations (calculate, model, graph, etc.) on various objects that
contain information (blood pressures, sales, political party affiliation, etc.)

Objects are similar to nouns: they hold Functions are similar to verbs: they do
information things to nouns
object_1 <- "Sally" work()
object_2 <- '"dog" run()
object_3 <- "road" implement()
16 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Functions and objects

Functions perform operations on objects.

sally_object <- "Sally" dog_object <- "dog" idea_object <- "idea"
work(sally_object) run(dog_object) implement(idea_object)
[Sally works.] [The dog runs.] [Implement the idea.]
17 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Packages and functions in R

Functions are stored in R packages. The median() function comes from the

stats package.
Fortunately, R comes 'out-of-the-box'

with a set of functions for basic data [stats::median(x)
management and statistical calculations.

~—

To access the functions in a package, use

the following syntax: The typeof () function comes from the
] base package.

package: :function(object)

~—

[base::typeof(x)

[1] "double"

18 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Packages and functions

Use tab-completion and the arrow keys in RStudio to explore a packages functions.

typ
type_convert typeof(x)
type_sum typeof determines the (R internal) type or storage mode of any

object
type.convert
Press F1 for additional help

typeof
TypelFont

We can take advantage of tab-completion by using names that allow us to look up
common objects. For example, naming plot objects with a pLot__ prefix will allow us to
use tab-completion to scroll through each object without having to remember the
specific name.

19 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Installing packages from CRAN

To install packages from CRAN, we can use the install.packages() function.

[install.packages(”package name")

NOTE: if this is the first time installing packages, you'll probably be presented with a
list of CRAN “mirrors” to use--choose the mirror closest to you.

To load the package into your environment, use Library(package name)

library(package name)

20 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Installing packages from CRAN in RStudio

You can also use the Packages pane in RStudio

Files Plots Packages Help Viewer
Install | @ Update

Name Description

Install Packages

Install from: ?) Configuring Repositories
Repository (CRAN) =

Packages (separate multiple with space or comma):
Package Name Here

Install to Library:
/Library/Frameworks/R.framework/Versions/4.0/Resources/library [C §

v/ Install dependencies

Install Cancel

21/ 60

https://github.com/mijfrigaard/csuc-data-journalism

Installing user packages

The code for user-written packages are typically stored in code repository, like
Github.

To access user-written packages, you'llneed to Use devtools::install_github() or remotes::install_github()
install the devtools or remotes packages. (with the author's username and package repository name)

devtools::install_github(<username>/<package>)

install.packages("devtools")
remotes::install_github(<username>/<package>)

install.packages("remotes")

22 | 60

https://github.com/mijfrigaard/csuc-data-journalism

https://github.com/

Objects

R is typically referred to as an "object-oriented programming" language

We've covered functions, so now we'll dive into the aspects of some
common R objects

23 /60

https://github.com/mijfrigaard/csuc-data-journalism

Types of objects In R

e Vectors e Arrays
o atomic (logical, integer, double, and o multidimensional objects
character)

o Data frames & tibbles
o S3 (factors, dates, date-times,

durations) o rectangular objects
e Matrices e Lists
o two dimensional objects o recursive objects

24 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Atomic vectors

Vectors are the fundamental data type in R.

Many of R's functions are vectorised, which means they're designed for performing
operations on vectors.

The "atomic" in atomic vectors means, "of or forming a single irreducible unit or
component in a larger system."

Atomic vectors can be logical, integer, double, or character (strings).

We will build each of these vectors using the previously covered assignment operator
(<-) and c () function (which stands for 'combine’).

25 | 60

https://github.com/mijfrigaard/csuc-data-journalism

Store and explore

A common practice in R is to create an
object, perform an operation on that
object with a function, and store the
results in new object.

We then explore the contents of the new
object with another function.

Many of the functions in R are written with
this store and explore process in mind.

https://github.com/mijfrigaard/csuc-data-journalism

Store

[Newobject] 4—@{ Object J

Explore

@{ [New object]} =

RESULTS

26 / 60

Atomic vectors: numeric

The two atomic numeric vectors are integer and double.

Integer vectors are created with a number and capital letter L (i.e. 1L, 10L)

vec_integer <- c(1L, 10L, 100L)

Double vectors can be entered as decimals, but they can also be created in scientific
notation (2.46e8), or values determined by the floating point standard (Inf, -=Inf and
NaN).

vec_double <- c(0.1, 1.0, 10.01)

27/ 60

https://github.com/mijfrigaard/csuc-data-journalism

Atomic vectors: numeric

We will use the typeof () and is.numeric() functions to explore the contents of
vec_integer and vec_double.

~—

[typeof(vec_integer)

[1] "integer"

[is.numeric(vec_integer)

typeof () tells us that thisis an "integer" vector, and is.numeric() tests to see if
it is numeric (which is TRUE).

~—

28 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Atomic vectors: logical vectors

Logical vectors can be TRUE or FALSE (or T or F for short). Below we use typeof ()
and is. logical() to explore the contents of vec_logical.

vec_logical <- c(TRUE, FALSE)
typeof(vec_logical)

|

[1] "logical"

~—

[is.logical(vec_logical)

29 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Atomic vectors: logical vectors

Logical vectors are handy because when we add them together, and the total number
tells us how many TRUE values there are.

[TRUE + TRUE + FALSE + TRUE

Logical vectors can be useful for subsetting (a way of extracting certain elements
from a particular object) based on a set of conditions.

~—

How many elements in vec_inteqger are greater than5?

[vec_integer > 5

[1] FALSE TRUE TRUE

30 /60

~—

https://github.com/mijfrigaard/csuc-data-journalism

Atomic vectors: character vectors

Character vectors store text data (note the double quotes). We'll store and explore
again.

vec_character <- c("A", "B", "C")
typeof(vec_character)

|

[1] "character"

~—

[is.character(vec_character)

Character vectors typically store text information that we need to include in a
calculation, visualization, or model. In these cases, we'll need to convert them into
factors. We'll cover those next.

31/60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors

S3 vectors can be factors, dates, date-times, and difftimes.

32 /60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: factors

Factors are categorical vectors with a given set of responses. Below we create a
factor with three levels: Low, medium, and high

vec_factor <- factor(x = c("low", "medium", "high"))
class(vec_factor)

~———

[1] "factor"

Factors are not character variables, though. They get stored with an integer indicator
for each character level.

~—

[typeof(vec_factor)

[1] "integer"

33 /60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: factor attributes

Factors are integer vectors with two additional attributes: class is set to factor, and
Llevels for each unique response.

We can check this with unique() and attributes() functions.

[unique(vec_factor)]

[1] low medium high

Levels: high low medium

[attributes(vec_factor)]

$levels
[1] "high" "Tlow" "medium

$class
[1] "factor"

60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: factor attributes

Levels are assigned alphabetically, but we can manually We can check the levels with levels() orunclass()
assign the order of factor levels with the levels argument
in factor(). levels(vec_factor)]
vec_factor <- factor([1] "low" "medium” "high"
x = c("medium", "high", "low"),
levels = C("-LOW", "medium", "high")) [unclass(vec_factor)]

[1] 2 3 1
attr(,"levels")
[1] "Tlow" "medium" "high"

35 /60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: date

Dates are stored as doub Le vectors with a c Llass attribute set to Date.

R has a function for getting today's date, Sys.Date(). We'll create a We can see adding units to the Sys.Date()
vec_date using Sys.Date() and adding 1 and 2 to this value. added days to today's date. The attributes()
function tells us this vector has it's own class.

vec_date <- c(Sys.Date(),
Sys.Date() + 1

, [attributes(vec_date)]
Sys.Date() + 2)

vec_date

$class
[1] "Date"

[1] "2021-11-30" '"2021-12-01" "2021-12-02"

36 / 60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: date calculations

Dates are stored as a number because they represent the amount of days since
January 1, 1970, which is referred to as the UNIX Epoch.

unclass () tells us what the actual number is.

[unclass(vec_date)]

[1] 18961 18962 18963

37 /60

https://github.com/mijfrigaard/csuc-data-journalism

https://en.wikipedia.org/wiki/Unix_time

S3 vectors: date-time

Date-times contain a bit more information than dates. The function to create a
datetime vector is as.POSIXct ().

We'll convert vec_date to a date-time and store it in vec _datetime ct. View the
results below.

[vec_date]

[1] "2021-11-30" '"2021-12-01" "2021-12-02"

vec_datetime ct <- as.P0SIXct(x = vec_date)
vec_datetime_ct

[1] "2021-11-29 17:00:00 MST" "2021-11-30 17:00:00 MST"
[3] "2021-12-01 17:00:00 MST"

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: date-time attributes

vec datetime ctisa double vector with an additional attribute of c Lass set to
"POSIXct" "POSIXt".

~—

[typeof(vec_datetime_ct)

[1] "double"

~—

[attributes(vec_datetime_ct)

$class

[1] "POSIXct" "POSIXt"

39 /60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: date-time help

Console Terminal R Markdown Jobs

Read more about date-times by entering

[1] "2020-10-09 17:00:00 MST" "2020-10-10 17:00:00 MST"
[3] "2020-10-11 17:00:00 MST"

the as.POSIXct function into the console e

> attributes(vec_datetime_ct)

preceded by a question mark. RS

> unclass(vec_datetime_ct)

[1] 1602288000 1602374400 1602460800
> attributes(vec_datetime_ct)

$class

7as.POSIXct

[1] "POSIXct" "POSIXt"

> ?as.POSIXct
>

Files Plots Packages Help Viewer
o

R: Date-time Conversion Functions » Find in Top

as.POSIX* {base}

as.POSIXct Refresh Help Topic

R Documentation

Date-time Conversion Functions

Description

Functions to manipulate objects of classes "POSIX1t" and "POSIXct" representing calendar dates and times.

Usage

as.POSIXct(x, tz
as.POSIX1t(x, tz

S3 method for class 'character’
as.POSIXlt(x, tz = "", format,
tryFormats = c("$Y-%m-%d
"$Y/%m/%d
"$Y-%m-%d
"$Y/%m/%d

"$Y-3m-8d"
"%Y/%m/%d"

optional = FALSE, ...)
Default S3 metho

as.POSIXlt(x, tz =

optional = FALSE, ...)
S3 method for class 'numeric'
as.POSIXlt(x, tz = "", origin, ...)

S3 method for class 'POSIX1t'
as.double(x, ...)

«

2H:2M:20S",
2H:3M:30S",
RH:¥M",
RH:¥M",

)

40 / 60

S3 vectors: difftime

Difftimes are durations, so we to create Difftimes are stored as a doub Le vector.
them with time 01 and time 02:
vec_difftime <- difftime(time_01,
time_01 <- Sys.Date() tlme—@f'" T
time_02 <- Sys.Date() + 10 . _ units = "days")
time 01 vec_difftime
[1] "2021-11-30" Time difference of -10 days
[time 02] [typeof(vec_difftime)]

[1] "double"

[1] "2021-12-10"

41/ 60

https://github.com/mijfrigaard/csuc-data-journalism

S3 vectors: difftime attributes

Difftimes are their own class and have a We can see the actual number stored in
units attribute set to whatever we've the vector with unclass()
specified in the units argument.

[unclass(vec_difftime)

attributes(vec_difftime)

[1] -10

attr(,"units")

class
$ [1] Ildaysll

[1] "difftime"

$units
[1] "dayS"

42 |/ 60

https://github.com/mijfrigaard/csuc-data-journalism

Matrices

A matrix is several vectors stored We can check the dimensions of
together into two a two-dimensional mat_data with dim().
object.
[dim(mat_data)]

mat_data <— matrix(
data = c(vec_double, [1] 3 2

vec_integer),
nrow = 3, ncol = 2, o)
byrow = FALSE) This is a three-column, two-row matrix.

mat_data

[,1]1 [,2]
[1,] 0.10 1

[2,] 1.00 10
[3,] 10.01 100

43 /| 60

https://github.com/mijfrigaard/csuc-data-journalism

Matrix positions

The output in the console tells us where each element is located in mat_data.

For example, if | want to get the 10 that's By placing the index ([2, 2]) next to the
stored in vec_integer, | can use look at object, | am telling R, "only return the
the output and use the indexes. value in this position".

mat_data] [mat_datal2, 2]]

[1,] 0.10 1

[2,] 1.00 10
[3,] 10.01 100

44 | 60

https://github.com/mijfrigaard/csuc-data-journalism

Arrays

Arrays are like matrices, but they can dat_array
have more dimensions.

dat_array <- array([,11 [,2] [,3]
data = c(1, 2, 3, 4, 5, [1,] 1 4 7

6, 7, 8, 9, 10, [2,] 2 5 8

11, 12, 13, 14, [3,] 3 §) 9

15, 16, 17, 18),
dim = c(3, 3, 2))

[,11 [,2] [,3]
[1,] 10 13 16
[2,] 11 14 17
[3,1] 12 15 18

45 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Array layers

dat_array contains numbers 1 through [ClaSS(dat—a”ay)]
ctacked In two Tayere,
stacked in two /ayers. Y
L1 [class(mat_data)]
. 1.2] .
[,3] [1] "matrix" "“array"
[1,]
2] i Matri but t
atrices are arrays, but arrays are no
[3,] ‘; matrices
V)
1\ |

46 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Data Frames

Data frames are rectangular data with DataFrame
rows and columns (or observations and) or it oaical
c character integer logica
variables). 1 A 0.10 TRUE
2 B 1.00 FALSE
DataFrame <- data.frame(3 C 1e.o1 TRUE
character = c("A", "B",
IICII)’
integer = c(0.1, 1.0, NOTE: stringsAsFactors = FALSE is not
10.01), required as of R version 4.0.0.
logical = c(TRUE, FALSE,
TRUE))

47 | 60

https://github.com/mijfrigaard/csuc-data-journalism

Data Frames

Check the structure of the data. frame str() gives us a transposed view of the
with str() DataFrame object, and tells us the

dimensions of the object.

str(DataFrame)

'data.frame': 3 obs. of 3 variables:
$ character: chr "A"™ "B" "C"

$ integer : num 0.1 1 10
$ logical : logi TRUE FALSE TRUE

48 |/ 60

https://github.com/mijfrigaard/csuc-data-journalism

Tibbles

Tibbles are a special kind of data. frame
(they print better to the console and
character vectors are never coerced into

factors).
Tibble <- tibble::tribble(
~character, ~integer, ~logical,
"A", 0.1, TRUE,
"B", 1, FALSE,
"c", 10.01, TRUE)

https://github.com/mijfrigaard/csuc-data-journalism

The syntax to build them is slightly
different, too.

[Tibble

A tibble: 3 x 3
character integer logical
<chr>

<dbl> <1g1>
0.1 TRUE
1 FALSE
10.0 TRUE

49 / 60

Tibbles

Check the structure of Tibb le.

str(Tibble)

str() tellsus tibbles are S3 objects,

tibble [3 x 3] (S3: with types tbL_df, tbl, and
tbl _df/tbl/data.frame)

$ character: chr [1:3] "A"™ "B" "C" data.Trame.

$ integer : num [1:3] 0.1 1 10

$ logical : logi [1:3] TRUE FALSE TRUE

50 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Data frames and tibbles

If you're importing spreadsheets, most of the work you'll do in R will be with
rectangular data objects (i.e. data. frames and tibbles).

L J
A

Data.frame/Tibble

These are the common rectangular data
storage object for tabular data in R

51/ 60

https://github.com/mijfrigaard/csuc-data-journalism

Data frames & tibbles

[DataFrame] [Tibble

A tibble: 3 x 3
character integer logical
<chr> <dbl> <lgl>

character integer logical
A 0.10 TRUE

1
2 B 1.00 FALSE
3 C 10.01 TRUE

0.1 TRUE
1 FALSE
10.0 TRUE

the data. frame prints the column names and
contents

the tibb e prints the column names, dimensions,
formats, and contents

52 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Data frames & tibbles

If we check the type of the DataFrame and Tibble...

[typeof(DataFrame)] [typeof(Tibble)]

[1] "list" [1] "1list"

..we see theyare Lists

53 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Data Frames & Tibbles

Both data. frames and tibbles are their own class,

[class(DataFrame)] [class(Tibble)

[1] "data.frame" [1] "tbl _df" "tb1" "data.frame"

So we can think of data. framesand tibb Les as special kinds of rectangular lists,
made with different types of vectors, with each vector being of equal length.

54 /| 60

https://github.com/mijfrigaard/csuc-data-journalism

Lists

Lists are special objects because they can Lists have a names attribute, which
contain all other objects (including other lists). we've defined above in double
, quotes.
dat_list <- list(

‘lnteger” = vec_lnteger, attributes(dat_list)

"array" = dat_array,

"matrix data" = mat_data,

"data frame" = DataFrame, ?Q?mﬁinteger" WSy

tibble® = Tibble) JI "'matrix data" "data frame" "tibble"

55 /60

https://github.com/mijfrigaard/csuc-data-journalism

List structure

If we check the structure of the dat list, we see the structure of list, and the
structure of the elements in the list.

str(dat_1list)

List of 5
$ integer : int [1:3] 1 10 100
$ array : num [1:3, 1:3, 1:2] 123 4567 89 10 ...
$ matrix data: num [1:3, 1:2] 0.1 1 10 1 10 ...
$ data frame :'data.frame': 3 obs. of 3 variables:
..$ character: chr [1:3] "A" "B" "C"

..$ integer : num [1:3] 0.1 1 10
..$ logical : logi [1:3] TRUE FALSE TRUE
$ tibble : tibble [3 x 3] (S3: tbl df/tbl/data.frame)
..$ character: chr [1:3] "A"™ "B" "C"
..$ integer : num [1:3] 0.1 1 10
..$ logical : logi [1:3] TRUE FALSE TRUE

56 / 60

https://github.com/mijfrigaard/csuc-data-journalism

Recap

In R, two major elements: functions and objects.
e functions are verbs, objects are nouns

Packages: use install.packages() and library() toload functions from
packages

e ordevtools::install_github(<username>/<package>) or
remotes::install_github(<username>/<package>)

The most common R object is a vector

e Atomic vectors: logical, integer, double, or character (strings)
e S3 vectors: factors, dates, date-times, and difftimes

5/ /60

https://github.com/mijfrigaard/csuc-data-journalism

Recap, cont.

More complicated data structures: matrices and arrays

e Matrix: two-dimensional object
e Array: multidimensional object

Rectangular data structures:

e data.frames & tibbles are special kinds of rectangular lists, which can hold
different types of vectors, with each vector being of equal length

Catch-all data structures:

e Jists can contain all other objects (including other lists)

58 / 60

https://github.com/mijfrigaard/csuc-data-journalism

More resources

Learn more about R objects in the help files or the following online texts:
1. R for Data Science

2. Advanced R

3. Hands on Programming with R

4. R Language Definition

59 / 60

https://github.com/mijfrigaard/csuc-data-journalism

https://r4ds.had.co.nz/
https://adv-r.hadley.nz/
https://rstudio-education.github.io/hopr/r-objects.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Objects

THANK YOU!

Feedback

@mijfrigaard on Twitter and Github

mjfrigaard@gmail.com

60 / 60

https://github.com/mijfrigaard/csuc-data-journalis

