
Introduction To R ProgrammingIntroduction To R Programming

R objects and functionsR objects and functions

by Martin Frigaardby Martin Frigaard
Written: September 30 2021Written: September 30 2021

Updated: November 30 2021Updated: November 30 2021

https://github.com/mjfrigaard/csuc-data-journalismhttps://github.com/mjfrigaard/csuc-data-journalism

Created using the "λέξις" themeCreated using the "λέξις" theme

https://jhelvy.github.io/lexis/index.html#what-does-%CE%BB%CE%AD%CE%BE%CE%B9%CF%82-mean

R Programming
R is a versatile language for data wrangling, visualization, and modeling

https://github.com/mjfrigaard/csuc-data-journalism

2 / 60

Resources
Link to slides
https://mjfrigaard.github.io/csuc-data-journalism/slides.html

Link to exercises
https://mjfrigaard.github.io/csuc-data-journalism/lessons-exercises.html

https://github.com/mjfrigaard/csuc-data-journalism

3 / 60

https://mjfrigaard.github.io/csuc-data-journalism/slides.html
https://mjfrigaard.github.io/csuc-data-journalism/lessons-exercises.html

Image credit: Image credit: R ProjectR Project

Getting StartedGetting Started

https://github.com/mjfrigaard/csuc-data-journalismhttps://github.com/mjfrigaard/csuc-data-journalism

4 / 604 / 60

https://www.r-project.org/

Installing R
Install R from the Comprehensive R Archive Network (CRAN):

https://cran.r-project.org/

You are recommended to use the RStudio IDE (but you do not have to).https://github.com/mjfrigaard/csuc-data-journalism

5 / 60

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/

Download RStudio
https://rstudio.com/products/rstudio/download/

https://github.com/mjfrigaard/csuc-data-journalism

6 / 60

https://rstudio.com/products/rstudio/download/

Or use RStudio.Cloud
https://rstudio.cloud/

https://github.com/mjfrigaard/csuc-data-journalism

7 / 60

https://rstudio.cloud/

The R Console
https://github.com/mjfrigaard/csuc-data-journalism

8 / 60

The RStudio IDE

https://github.com/mjfrigaard/csuc-data-journalism

9 / 60

Running R Commands
You can run R commands in the Console by entering them after the > operator (see
example in R below)

https://github.com/mjfrigaard/csuc-data-journalism

print("Hello World")

 [1] "Hello World"

10 / 60

Running R Commands
You can also run them in R scripts (see example in RStudio below)

https://github.com/mjfrigaard/csuc-data-journalism

11 / 60

Functions

Functions perform operations: calculate
a mean, build a table, create a graph,
etc.

Objects

Objects hold information: a collection of
numbers, dates, words, models results,
etc.

R Syntax
The R syntax is comprised of two major elements:

https://github.com/mjfrigaard/csuc-data-journalism

12 / 60

We use We use functionsfunctions to perform operations on to perform operations on
objectsobjects

https://github.com/mjfrigaard/csuc-data-journalismhttps://github.com/mjfrigaard/csuc-data-journalism

13 / 6013 / 60

Example: create a vector of numbers
The standard assignment operator in R is <-. We can use this in combination with c()
to create an object x, which contains five numbers (1, 3, 5, 7, 9).

Place x inside print() to print x to the console

NOTE: We can also use the = and move -> to the end of the expression, but this is not
recommended

https://github.com/mjfrigaard/csuc-data-journalism

x <- c(1, 3, 5, 7, 9)

x <- c(1, 3, 5, 7, 9)
print(x)

14 / 60

R Syntax: functions

In the example above, we've created object x, but what are <- and c()?

We can check this by passing them both in backticks to the class() function below.

https://github.com/mjfrigaard/csuc-data-journalism

x <- c(1, 3, 5, 7, 9)
print(x)

 [1] 1 3 5 7 9

class(`<-`)

 [1] "function"

class(`c`)

 [1] "function"
15 / 60

Objects are similar to nouns: they hold
information

Functions are similar to verbs: they do
things to nouns

Functions in R

Functions perform operations (calculate, model, graph, etc.) on various objects that
contain information (blood pressures, sales, political party affiliation, etc.)

https://github.com/mjfrigaard/csuc-data-journalism

object_1 <- "Sally"
object_2 <- "dog"
object_3 <- "road"

work()
run()
implement()

16 / 60

Sally works. The dog runs. Implement the idea.

Functions and objects
Functions perform operations on objects.

https://github.com/mjfrigaard/csuc-data-journalism

sally_object <- "Sally"
work(sally_object)

dog_object <- "dog"
run(dog_object)

idea_object <- "idea"
implement(idea_object)

17 / 60

Functions are stored in R packages.

Fortunately, R comes 'out-of-the-box'
with a set of functions for basic data
management and statistical calculations.

To access the functions in a package, use
the following syntax:

The median() function comes from the
stats package.

The typeof() function comes from the
base package.

Packages and functions in R

https://github.com/mjfrigaard/csuc-data-journalism

package::function(object)

stats::median(x)

 [1] 5

base::typeof(x)

 [1] "double"

18 / 60

Packages and functions
Use tab-completion and the arrow keys in RStudio to explore a packages functions.

We can take advantage of tab-completion by using names that allow us to look up
common objects. For example, naming plot objects with a plot_ prefix will allow us to
use tab-completion to scroll through each object without having to remember the
specific name.

https://github.com/mjfrigaard/csuc-data-journalism

19 / 60

Installing packages from CRAN
To install packages from CRAN, we can use the install.packages() function.

NOTE: if this is the first time installing packages, you'll probably be presented with a
list of CRAN “mirrors” to use--choose the mirror closest to you.

To load the package into your environment, use library(package name)

https://github.com/mjfrigaard/csuc-data-journalism

install.packages("package name")

library(package name)

20 / 60

Installing packages from CRAN in RStudio
You can also use the Packages pane in RStudio

https://github.com/mjfrigaard/csuc-data-journalism

21 / 60

To access user-written packages, you'll need to
install the devtools or remotes packages.

Use devtools::install_github() or remotes::install_github()
(with the author's username and package repository name)

Installing user packages
The code for user-written packages are typically stored in code repository, like
Github.

https://github.com/mjfrigaard/csuc-data-journalism

install.packages("devtools")
install.packages("remotes")

devtools::install_github(<username>/<package>)
remotes::install_github(<username>/<package>)

22 / 60

https://github.com/

ObjectsObjects
R is typically referred to as an "object-oriented programming" languageR is typically referred to as an "object-oriented programming" language

We've covered functions, so now we'll dive into the aspects of someWe've covered functions, so now we'll dive into the aspects of some
common R objectscommon R objects

https://github.com/mjfrigaard/csuc-data-journalismhttps://github.com/mjfrigaard/csuc-data-journalism

23 / 6023 / 60

Vectors

atomic (logical, integer, double, and
character)

S3 (factors, dates, date-times,
durations)

Matrices

two dimensional objects

Arrays

multidimensional objects

Data frames & tibbles

rectangular objects

Lists

recursive objects

Types of objects in R

https://github.com/mjfrigaard/csuc-data-journalism

24 / 60

Atomic vectors
Vectors are the fundamental data type in R.

Many of R's functions are vectorised, which means they're designed for performing
operations on vectors.

The "atomic" in atomic vectors means, "of or forming a single irreducible unit or
component in a larger system."

Atomic vectors can be logical, integer, double, or character (strings).

We will build each of these vectors using the previously covered assignment operator
(<-) and c() function (which stands for 'combine').

https://github.com/mjfrigaard/csuc-data-journalism

25 / 60

A common practice in R is to create an
object, perform an operation on that
object with a function, and store the
results in new object.

We then explore the contents of the new
object with another function.

Store and explore

Many of the functions in R are written with
this store and explore process in mind.

https://github.com/mjfrigaard/csuc-data-journalism

26 / 60

Atomic vectors: numeric
The two atomic numeric vectors are integer and double.

Integer vectors are created with a number and capital letter L (i.e. 1L, 10L)

Double vectors can be entered as decimals, but they can also be created in scientific
notation (2.46e8), or values determined by the floating point standard (Inf, -Inf and
NaN).

https://github.com/mjfrigaard/csuc-data-journalism

vec_integer <- c(1L, 10L, 100L)

vec_double <- c(0.1, 1.0, 10.01)

27 / 60

Atomic vectors: numeric
We will use the typeof() and is.numeric() functions to explore the contents of
vec_integer and vec_double.

typeof() tells us that this is an "integer" vector, and is.numeric() tests to see if
it is numeric (which is TRUE).

https://github.com/mjfrigaard/csuc-data-journalism

typeof(vec_integer)

 [1] "integer"

is.numeric(vec_integer)

 [1] TRUE

28 / 60

Atomic vectors: logical vectors
Logical vectors can be TRUE or FALSE (or T or F for short). Below we use typeof()
and is.logical() to explore the contents of vec_logical.

https://github.com/mjfrigaard/csuc-data-journalism

vec_logical <- c(TRUE, FALSE)
typeof(vec_logical)

 [1] "logical"

is.logical(vec_logical)

 [1] TRUE

29 / 60

Atomic vectors: logical vectors
Logical vectors are handy because when we add them together, and the total number
tells us how many TRUE values there are.

Logical vectors can be useful for subsetting (a way of extracting certain elements
from a particular object) based on a set of conditions.

How many elements in vec_integer are greater than 5?

https://github.com/mjfrigaard/csuc-data-journalism

TRUE + TRUE + FALSE + TRUE

 [1] 3

vec_integer > 5

 [1] FALSE TRUE TRUE

30 / 60

Atomic vectors: character vectors
Character vectors store text data (note the double quotes). We'll store and explore
again.

Character vectors typically store text information that we need to include in a
calculation, visualization, or model. In these cases, we'll need to convert them into
factors. We'll cover those next.

https://github.com/mjfrigaard/csuc-data-journalism

vec_character <- c("A", "B", "C")
typeof(vec_character)

 [1] "character"

is.character(vec_character)

 [1] TRUE

31 / 60

S3 vectorsS3 vectors
S3 vectors can be factors, dates, date-times, and difftimes.S3 vectors can be factors, dates, date-times, and difftimes.

https://github.com/mjfrigaard/csuc-data-journalismhttps://github.com/mjfrigaard/csuc-data-journalism

32 / 6032 / 60

S3 vectors: factors
Factors are categorical vectors with a given set of responses. Below we create a
factor with three levels: low, medium, and high

Factors are not character variables, though. They get stored with an integer indicator
for each character level.

https://github.com/mjfrigaard/csuc-data-journalism

vec_factor <- factor(x = c("low", "medium", "high"))
class(vec_factor)

 [1] "factor"

typeof(vec_factor)

 [1] "integer"

33 / 60

S3 vectors: factor attributes
Factors are integer vectors with two additional attributes: class is set to factor, and
levels for each unique response.

We can check this with unique() and attributes() functions.

https://github.com/mjfrigaard/csuc-data-journalism

unique(vec_factor)

 [1] low medium high
 Levels: high low medium

attributes(vec_factor)

 $levels
 [1] "high" "low" "medium"

 $class
 [1] "factor"

34 / 60

Levels are assigned alphabetically, but we can manually
assign the order of factor levels with the levels argument
in factor().

We can check the levels with levels() or unclass()

S3 vectors: factor attributes

https://github.com/mjfrigaard/csuc-data-journalism

vec_factor <- factor(
 x = c("medium", "high", "low"),
 levels = c("low", "medium", "high"))

levels(vec_factor)

 [1] "low" "medium" "high"

unclass(vec_factor)

 [1] 2 3 1
 attr(,"levels")
 [1] "low" "medium" "high"

35 / 60

R has a function for getting today's date, Sys.Date(). We'll create a
vec_date using Sys.Date() and adding 1 and 2 to this value.

We can see adding units to the Sys.Date()
added days to today's date. The attributes()
function tells us this vector has it's own class.

S3 vectors: date
Dates are stored as double vectors with a class attribute set to Date.

https://github.com/mjfrigaard/csuc-data-journalism

vec_date <- c(Sys.Date(),
 Sys.Date() + 1,
 Sys.Date() + 2)
vec_date

 [1] "2021-11-30" "2021-12-01" "2021-12-02"

attributes(vec_date)

 $class
 [1] "Date"

36 / 60

S3 vectors: date calculations
Dates are stored as a number because they represent the amount of days since
January 1, 1970, which is referred to as the UNIX Epoch.

unclass() tells us what the actual number is.

https://github.com/mjfrigaard/csuc-data-journalism

unclass(vec_date)

 [1] 18961 18962 18963

37 / 60

https://en.wikipedia.org/wiki/Unix_time

S3 vectors: date-time
Date-times contain a bit more information than dates. The function to create a
datetime vector is as.POSIXct().

We'll convert vec_date to a date-time and store it in vec_datetime_ct. View the
results below.

We can see vec_datetime_ct stores some additional information.
https://github.com/mjfrigaard/csuc-data-journalism

vec_date

 [1] "2021-11-30" "2021-12-01" "2021-12-02"

vec_datetime_ct <- as.POSIXct(x = vec_date)
vec_datetime_ct

 [1] "2021-11-29 17:00:00 MST" "2021-11-30 17:00:00 MST"
 [3] "2021-12-01 17:00:00 MST"

38 / 60

S3 vectors: date-time attributes
vec_datetime_ct is a double vector with an additional attribute of class set to
"POSIXct" "POSIXt".

https://github.com/mjfrigaard/csuc-data-journalism

typeof(vec_datetime_ct)

 [1] "double"

attributes(vec_datetime_ct)

 $class
 [1] "POSIXct" "POSIXt"

39 / 60

Read more about date-times by entering
the as.POSIXct function into the console
preceded by a question mark.

S3 vectors: date-time help

https://github.com/mjfrigaard/csuc-data-journalism

?as.POSIXct

40 / 60

Difftimes are durations, so we to create
them with time_01 and time_02:

Difftimes are stored as a double vector.

S3 vectors: difftime

https://github.com/mjfrigaard/csuc-data-journalism

time_01 <- Sys.Date()
time_02 <- Sys.Date() + 10
time_01

 [1] "2021-11-30"

time_02

 [1] "2021-12-10"

vec_difftime <- difftime(time_01,
 time_02,
 units = "days")
vec_difftime

 Time difference of -10 days

typeof(vec_difftime)

 [1] "double"

41 / 60

Difftimes are their own class and have a
units attribute set to whatever we've
specified in the units argument.

We can see the actual number stored in
the vector with unclass()

S3 vectors: difftime attributes

https://github.com/mjfrigaard/csuc-data-journalism

attributes(vec_difftime)

 $class
 [1] "difftime"

 $units
 [1] "days"

unclass(vec_difftime)

 [1] -10
 attr(,"units")
 [1] "days"

42 / 60

A matrix is several vectors stored
together into two a two-dimensional
object.

We can check the dimensions of
mat_data with dim().

This is a three-column, two-row matrix.

Matrices

https://github.com/mjfrigaard/csuc-data-journalism

mat_data <- matrix(
 data = c(vec_double,
vec_integer),
 nrow = 3, ncol = 2,
 byrow = FALSE)
mat_data

 [,1] [,2]
 [1,] 0.10 1
 [2,] 1.00 10
 [3,] 10.01 100

dim(mat_data)

 [1] 3 2

43 / 60

For example, if I want to get the 10 that's
stored in vec_integer, I can use look at
the output and use the indexes.

By placing the index ([2, 2]) next to the
object, I am telling R, "only return the
value in this position".

Matrix positions
The output in the console tells us where each element is located in mat_data.

https://github.com/mjfrigaard/csuc-data-journalism

mat_data

 [,1] [,2]
 [1,] 0.10 1
 [2,] 1.00 10
 [3,] 10.01 100

mat_data[2, 2]

 [1] 10

44 / 60

Arrays are like matrices, but they can
have more dimensions.

Arrays

https://github.com/mjfrigaard/csuc-data-journalism

dat_array <- array(
 data = c(1, 2, 3, 4, 5,
 6, 7, 8, 9, 10,
 11, 12, 13, 14,
 15, 16, 17, 18),
 dim = c(3, 3, 2))

dat_array

 , , 1

 [,1] [,2] [,3]
 [1,] 1 4 7
 [2,] 2 5 8
 [3,] 3 6 9

 , , 2

 [,1] [,2] [,3]
 [1,] 10 13 16
 [2,] 11 14 17
 [3,] 12 15 18

45 / 60

dat_array contains numbers 1 through
18 in three columns and three rows,
stacked in two layers.

Matrices are arrays, but arrays are not
matrices

Array layers

https://github.com/mjfrigaard/csuc-data-journalism

class(dat_array)

 [1] "array"

class(mat_data)

 [1] "matrix" "array"

46 / 60

Data frames are rectangular data with
rows and columns (or observations and
variables).

NOTE: stringsAsFactors = FALSE is not
required as of R version 4.0.0.

Data Frames

https://github.com/mjfrigaard/csuc-data-journalism

DataFrame <- data.frame(
 character = c("A", "B",
"C"),
 integer = c(0.1, 1.0,
10.01),
 logical = c(TRUE, FALSE,
TRUE))

DataFrame

 character integer logical
 1 A 0.10 TRUE
 2 B 1.00 FALSE
 3 C 10.01 TRUE

47 / 60

Check the structure of the data.frame
with str()

str() gives us a transposed view of the
DataFrame object, and tells us the
dimensions of the object.

Data Frames

https://github.com/mjfrigaard/csuc-data-journalism

str(DataFrame)

 'data.frame': 3 obs. of 3 variables:
 $ character: chr "A" "B" "C"
 $ integer : num 0.1 1 10
 $ logical : logi TRUE FALSE TRUE

48 / 60

Tibbles are a special kind of data.frame
(they print better to the console and
character vectors are never coerced into
factors).

The syntax to build them is slightly
different, too.

Tibbles

https://github.com/mjfrigaard/csuc-data-journalism

Tibble <- tibble::tribble(
 ~character, ~integer, ~logical,
 "A", 0.1, TRUE,
 "B", 1, FALSE,
 "C", 10.01, TRUE)

Tibble

 # A tibble: 3 × 3
 character integer logical
 <chr> <dbl> <lgl>
 1 A 0.1 TRUE
 2 B 1 FALSE
 3 C 10.0 TRUE

49 / 60

Check the structure of Tibble.

str() tells us tibbles are S3 objects,
with types tbl_df, tbl, and
data.frame.

Tibbles

https://github.com/mjfrigaard/csuc-data-journalism

str(Tibble)

 tibble [3 × 3] (S3:
tbl_df/tbl/data.frame)
 $ character: chr [1:3] "A" "B" "C"
 $ integer : num [1:3] 0.1 1 10
 $ logical : logi [1:3] TRUE FALSE TRUE

50 / 60

These are the common rectangular data
storage object for tabular data in R

Data frames and tibbles
If you're importing spreadsheets, most of the work you'll do in R will be with
rectangular data objects (i.e. data.frames and tibbles).

https://github.com/mjfrigaard/csuc-data-journalism

51 / 60

the data.frame prints the column names and
contents

the tibble prints the column names, dimensions,
formats, and contents

Data frames & tibbles

https://github.com/mjfrigaard/csuc-data-journalism

DataFrame

 character integer logical
 1 A 0.10 TRUE
 2 B 1.00 FALSE
 3 C 10.01 TRUE

Tibble

 # A tibble: 3 × 3
 character integer logical
 <chr> <dbl> <lgl>
 1 A 0.1 TRUE
 2 B 1 FALSE
 3 C 10.0 TRUE

52 / 60

Data frames & tibbles
If we check the type of the DataFrame and Tibble...

...we see they are lists

https://github.com/mjfrigaard/csuc-data-journalism

typeof(DataFrame)

 [1] "list"

typeof(Tibble)

 [1] "list"

53 / 60

Data Frames & Tibbles
Both data.frames and tibbles are their own class,

So we can think of data.frames and tibbles as special kinds of rectangular lists,
made with different types of vectors, with each vector being of equal length.

https://github.com/mjfrigaard/csuc-data-journalism

class(DataFrame)

 [1] "data.frame"

class(Tibble)

 [1] "tbl_df" "tbl" "data.frame"

54 / 60

Lists are special objects because they can
contain all other objects (including other lists).

Lists have a names attribute, which
we've defined above in double
quotes.

Lists

https://github.com/mjfrigaard/csuc-data-journalism

dat_list <- list(
 "integer" = vec_integer,
 "array" = dat_array,
 "matrix data" = mat_data,
 "data frame" = DataFrame,
 "tibble" = Tibble)

attributes(dat_list)

 $names
 [1] "integer" "array"
"matrix data" "data frame" "tibble"

55 / 60

List structure
If we check the structure of the dat_list, we see the structure of list, and the
structure of the elements in the list.

https://github.com/mjfrigaard/csuc-data-journalism

str(dat_list)

 List of 5
 $ integer : int [1:3] 1 10 100
 $ array : num [1:3, 1:3, 1:2] 1 2 3 4 5 6 7 8 9 10 ...
 $ matrix data: num [1:3, 1:2] 0.1 1 10 1 10 ...
 $ data frame :'data.frame': 3 obs. of 3 variables:
 ..$ character: chr [1:3] "A" "B" "C"
 ..$ integer : num [1:3] 0.1 1 10
 ..$ logical : logi [1:3] TRUE FALSE TRUE
 $ tibble : tibble [3 × 3] (S3: tbl_df/tbl/data.frame)
 ..$ character: chr [1:3] "A" "B" "C"
 ..$ integer : num [1:3] 0.1 1 10
 ..$ logical : logi [1:3] TRUE FALSE TRUE

56 / 60

Recap
In R, two major elements: functions and objects.

functions are verbs, objects are nouns

Packages: use install.packages() and library() to load functions from
packages

or devtools::install_github(<username>/<package>) or
remotes::install_github(<username>/<package>)

The most common R object is a vector

Atomic vectors: logical, integer, double, or character (strings)
S3 vectors: factors, dates, date-times, and difftimes

https://github.com/mjfrigaard/csuc-data-journalism

57 / 60

Recap, cont.
More complicated data structures: matrices and arrays

Matrix: two-dimensional object
Array: multidimensional object

Rectangular data structures:

data.frames & tibbles are special kinds of rectangular lists, which can hold
different types of vectors, with each vector being of equal length

Catch-all data structures:

lists can contain all other objects (including other lists)

https://github.com/mjfrigaard/csuc-data-journalism

58 / 60

More resources
Learn more about R objects in the help files or the following online texts:

1. R for Data Science

2. Advanced R

3. Hands on Programming with R

4. R Language Definition

https://github.com/mjfrigaard/csuc-data-journalism

59 / 60

https://r4ds.had.co.nz/
https://adv-r.hadley.nz/
https://rstudio-education.github.io/hopr/r-objects.html
https://cran.r-project.org/doc/manuals/r-release/R-lang.html#Objects

THANK YOU!
Feedback

@mjfrigaard on Twitter and Github

mjfrigaard@gmail.com

https://github.com/mjfrigaard/csuc-data-journalism

60 / 60

