Shiny frameworks (part 4, leprechaun)

shiny
code
packages
Author

Martin Frigaard

Published

February 21, 2023

This is the fourth post in a series on shiny app frameworks. In this post, I’ll build a ‘leaner and smaller’ shiny app using the leprechaun package and framework.

Framework comparisons

The original post that inspired this series compares ‘vanilla shiny’ (bare-bones shiny application), golem, leprechaun, and rhino across a series of dimensions (framework reliability, target type of developer, overall developing experience, etc.).

This series focuses on thee technical areas: Start, Build, and Use.

  • Start covers the steps required to begin building a shiny app with the framework (from the console and IDE), and any additional packages or dependencies.

  • Build covers the development process, which includes writing and storing code, data, external resources (like CSS or JavaScript), testing, etc.

  • Use shows how developers can launch their application using the given framework/package locally (i.e., within the RStudio (Posit) IDE), common workflow tips, and any aspects of the framework I found confusing while building the application.

  • In part 1, I built a ‘minimal’ shiny app (VanillaApp)

  • In part 2, I structured the shiny application as an R package using usethis and devtools, (myPkgApp).

  • In post number three, I used the popular golem framework (myGolemApp)

The GitHub repo with all shiny app setups is here.

myLeprechaunApp

leprechaun apps are built using the same methods as R packages (devtools and usethis), but are intended to be a ‘leaner and smaller’ version of golem.

What does ‘leaner and smaller’ mean?

leprechaun doesn’t add itself as a dependency (i.e., no need to add leprechaun to the list of Imports in the DESCRIPTION or NAMESPACE). ‘the golem in the room’ on the package website is worth reading because it covers the differences between the two packages (and why you might choose one over the other).

Start

usethis::create_package("myLeprechaunApp")

Click Code to see output

Code
 Creating '../projects/myLeprechaunApp/'
 Setting active project to '/Users/mjfrigaard/projects/myLeprechaunApp'
 Creating 'R/'
 Writing 'DESCRIPTION'
Package: myLeprechaunApp
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000
Authors@R (parsed):
    * First Last <first.last@example.com> [aut, cre] (YOUR-ORCID-ID)
Description: What the package does (one paragraph).
License: `use_mit_license()`, `use_gpl3_license()` or friends to
    pick a license
Encoding: UTF-8
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3
 Writing 'NAMESPACE'
 Writing 'myLeprechaunApp.Rproj'
 Adding '^myLeprechaunApp\\.Rproj$' to '.Rbuildignore'
 Adding '.Rproj.user' to '.gitignore'
 Adding '^\\.Rproj\\.user$' to '.Rbuildignore'
 Opening '/Users/mjfrigaard/projects/myLeprechaunApp/' in new RStudio session
 Setting active project to '<no active project>'

When creating a new leprechaun package in the IDE, it’s identical to the R package setup.

Figure 1: myLeprechaunApp

After the new project opens, install and load the leprechaun package, then run leprechaun::scaffold():

install.packages("leprechaun")
library(leprechaun)
leprechaun::scaffold()

Click Code to see output

Code
── Scaffolding leprechaun app ─────────────────────────────────────────

── Creating lock file ──

 Creating .leprechaun

── Adding dependencies ──

 Adding 'shiny' to Imports in DESCRIPTION
 Adding 'bslib' to Imports in DESCRIPTION
 Adding 'htmltools' to Imports in DESCRIPTION
 Adding 'pkgload' to Suggests in DESCRIPTION


── Generating code ──

 Creating R/ui.R
 Creating R/assets.R
 Creating R/run.R
 Creating R/server.R
 Creating R/leprechaun-utils.R
 Creating R/_disable_autoload.R
 Creating R/zzz.R
 Creating R/input-handlers.R

 Creating inst/dev
 Creating inst/assets
 Creating inst/img
 Creating inst/run/app.R

── Ignoring files ──

 Adding '^\\.leprechaun$' to '.Rbuildignore'

This results in the following folder tree:

myLeprechaunApp/
        ├── DESCRIPTION
        ├── NAMESPACE
        ├── R/
           ├── _disable_autoload.R
           ├── assets.R
           ├── input-handlers.R
           ├── leprechaun-utils.R
           ├── run.R
           ├── server.R
           ├── ui.R
           └── zzz.R
        ├── inst/
           ├── assets/
           ├── dev/
           ├── img/
           └── run/
               └── app.R
        └── myLeprechaunApp.Rproj

7 directories, 12 files

This structure should look familiar if you’ve been following along with this series. The standard R package files and folders (DESCRIPTION, NAMESPACE, R/, and myLeprechaunApp.Rproj) are accompanied by multiple sub-folders in inst/ (recall that inst/ contents are available in the package when the package is installed).

Setup

In this section I’ll cover the initial files in the new leprechaun application.

R/

  • The R/ folder contents are below:

    • Some of these files should look familiar (R/ui.R, R/server.R, and R/run.R)
            └── R/
                ├── _disable_autoload.R
                ├── assets.R
                ├── input-handlers.R
                ├── leprechaun-utils.R
                ├── run.R
                ├── server.R
                ├── ui.R
                └── zzz.R
  • The initial application files are created using leprechaun::scaffold(), which takes the following options as function arguments:

    • ui controls the application layout (can be "fluidPage" or "navbarPage", defaults to "navbarPage")
    • bs_version Bootstrap version (“If shiny > 1.6 is installed defaults to version 5, otherwise version 4” )
    • overwrite: Overwrite all files?
  • assets.R: contains the serveAssets() function, which will identify the modules using CSS or JavaScript and create dependencies, a list of metadata on the app. If you run the function after initially building your leprechaun app, you’ll see the following:

    Click on Code to view code in R/assets.R

    Code
    #' Dependencies
    #'
    #' @param modules JavaScript files names that require
    #' the `type = module`.
    #' @importFrom htmltools htmlDependency
    #'
    #' @keywords internal
    serveAssets <- function(modules = NULL) {
      # JavaScript files
      javascript <- list.files(
        system.file(package = "myLeprechaunApp"),
        recursive = TRUE,
        pattern = ".js$"
      )
    
      modules <- get_modules(javascript, modules)
      javascript <- remove_modules(javascript, modules)
    
      # CSS files
      css <- list.files(
        system.file(package = "myLeprechaunApp"),
        recursive = TRUE,
        pattern = ".css$"
      )
    
      # so dependency processes correctly
      names(css) <- rep("file", length(css))
      names(javascript) <- rep("file", length(javascript))
    
      # serve dependencies
      dependencies <- list()
    
      standard <- htmlDependency(
        "myLeprechaunApp",
        version = utils::packageVersion("myLeprechaunApp"),
        package = "myLeprechaunApp",
        src = ".",
        script = javascript,
        stylesheet = css
      )
      dependencies <- append(dependencies, list(standard))
    
      if (!is.null(modules)) {
        modules <- htmlDependency(
          "myLeprechaunApp-modules",
          version = utils::packageVersion("myLeprechaunApp"),
          package = "myLeprechaunApp",
          src = ".",
          script = modules,
          meta = list(type = "module")
        )
        dependencies <- append(dependencies, list(modules))
      }
    
      return(dependencies)
    }
    
    #' Module
    #'
    #' Retrieve and add modules from a vector of files.
    #'
    #' @param files JavaScript files
    #' @param modules JavaScript files names that require
    #' the `type = module`.
    #' @importFrom htmltools htmlDependency
    #'
    #' @keywords internal
    #' @name js-modules
    remove_modules <- function(files, modules) {
      if (is.null(modules)) {
        return(files)
      }
    
      # make pattern
      pattern <- collapse_files(modules)
    
      # remove modules
      files[!grepl(pattern, files)]
    }
    
    #' @rdname js-modules
    #' @keywords internal
    get_modules <- function(files, modules) {
      if (is.null(modules)) {
        return(NULL)
      }
    
      # make pattern
      pattern <- collapse_files(modules)
    
      # remove modules
      files[grepl(pattern, files)]
    }
    
    # collapse files into a pattern
    collapse_files <- function(files) {
      pattern <- paste0(files, collapse = "$|")
      paste0(pattern, "$")
    }
    serveAssets()

    Click on Code to view the initial output from serveAssets()

    Code
    [[1]]
    List of 10
     $ name      : chr "myLeprechaunApp"
     $ version   : chr "0.0.0.9000"
     $ src       :List of 1
      ..$ file: chr "."
     $ meta      : NULL
     $ script    : Named chr(0) 
      ..- attr(*, "names")= chr(0) 
     $ stylesheet: Named chr(0) 
      ..- attr(*, "names")= chr(0) 
     $ head      : NULL
     $ attachment: NULL
     $ package   : chr "myLeprechaunApp"
     $ all_files : logi TRUE
     - attr(*, "class")= chr "html_dependency"
  • _disable_autoload.R is a way to disable the shiny::loadSupport() function. By default, shiny will load any top-level supporting .R files in the R/ directory adjacent to the app.R/server.R/ui.R files.

  • input-handlers.R:

    Click on Code to view code in R/input-handlers.R

    Code
    #' Input Dataframe
    #' 
    #' Converts the input received from the WebSocket
    #' to a data.frame.
    #' 
    #' @param data Input data received from WebSocket.
    #' 
    #' @keywords internal
    leprechaun_handler_df <- function(data){
        do.call("rbind", lapply(data))
    }
    
    #' Input List
    #' 
    #' Forces the input received from the WebSocket 
    #' to a list. This should really not be needed as
    #' it is handled like so by default.
    #' 
    #' @param data Input data received from WebSocket.
    #' 
    #' @keywords internal
    leprechaun_handler_list <- function(data){
        return(data)
    }
    
    .onAttach <- function(...) {
        shiny::registerInputHandler(
            "myLeprechaunApp.list", 
            leprechaun_handler_list, 
            force = TRUE
        )
    
        shiny::registerInputHandler(
            "myLeprechaunApp.df", 
            leprechaun_handler_df, 
            force = TRUE
        )
    }
  • leprechaun-utils.R initially contains the make_send_message() function (which is used in the R/server.R below).

    Click on Code to view code in R/leprechaun-utils.R

    Code
    #' Create a Helper to Send Messages
    #'
    #' Create a function to send custom messages to the front-end,
    #' this function makes it such that the namespace is carried
    #' along.
    #' The namespace is appended as `ns`.
    #' The namespace with the optional hyphen is
    #' included as `ns2`.
    #'
    #' @param session Shiny session to derive namespace
    #' @param prefix A prefix to add to all types.
    #' Note that the prefix is followed by a hyphen `-`.
    #'
    #' @examples
    #' \dontrun{
    #' send_message <- make_send_message(session)
    #' send_message("do-sth")
    #' send_message("do-sth-else", x = 1)
    #'
    #' # with prefix
    #' send_message <- make_send_message(session, prefix = "PREFIX")
    #'
    #' # this sends a message of type:
    #' # PREFIX-so-th
    #' send_message("do-sth")
    #' }
    #'
    #' @noRd
    #' @keywords internal
    make_send_message <- function(session, prefix = NULL) {
      ns <- session$ns(NULL)
    
      ns2 <- ns
      if (length(ns) > 0 && ns != "") {
        ns2 <- paste0(ns2, "-")
      }
    
      function(msgId, ...) {
        if (!is.null(prefix)) {
          msgId <- sprintf("%s-%s", prefix, msgId)
        }
    
        session$sendCustomMessage(
          msgId,
          list(
            ns = ns,
            ns2 = ns2,
            ...
          )
        )
      }
    }
  • run.R contains functions for running the production (run()) and development version of the application (run_dev()):

    Click on Code to view code in R/run.R

    Code
    #' Run
    #' 
    #' Run application
    #' 
    #' @param ... Additional parameters to pass to [shiny::shinyApp].
    #' 
    #' @importFrom shiny shinyApp
    #' 
    #' @export 
    run <- function(...){
        shinyApp(
            ui = ui,
            server = server,
            ...
        )
    }
    
    #' Run Development
    #' 
    #' Runs the development version which includes
    #' the build step.
    #' 
    #' @keywords internal
    run_dev <- function(){
        file <- system.file("run/app.R", package = "myLeprechaunApp")
        shiny::shinyAppFile(file)
    }
  • server.R by default creates send_message with make_send_message(session) (see R/leprechaun-utils.R above).

    Click on Code to view code in R/server.R

    Code
    #' Server
    #' 
    #' Core server function.
    #' 
    #' @param input,output Input and output list objects
    #' containing said registered inputs and outputs.
    #' @param session Shiny session.
    #' 
    #' @noRd 
    #' @keywords internal
    server <- function(input, output, session){
        send_message <- make_send_message(session)  
    }
  • ui.R holds the ui() and assets() functions. assets() loads the resources called in the R/assets.R file (see serveAssets() function above).

    Click on Code to view code in ui()

    Code
    #' Shiny UI
    #' 
    #' Core UI of package.
    #' 
    #' @param req The request object.
    #' 
    #' @import shiny
    #' @importFrom bslib bs_theme
    #' 
    #' @keywords internal
    ui <- function(req) {
        fluidPage(
            theme = bs_theme(version = 5),
            assets(),
            h1("myLeprechaunApp")
        )
    }

    Click on Code to view code in assets()

    Code
    #' Assets
    #' 
    #' Includes all assets.
    #' This is a convenience function that wraps
    #' [serveAssets] and allows easily adding additional
    #' remote dependencies (e.g.: CDN) should there be any.
    #' 
    #' @importFrom shiny tags
    #' 
    #' @keywords internal
    assets <- function() {
        list(
            serveAssets(), # base assets (assets.R)
            tags$head(
                # Place any additional depdendencies here
                # e.g.: CDN
            )   
        )
    }
  • zzz.R contains shiny’s addResourcePath() function for adding images to the application (in inst/img/)

    Click on Code to view code in R/zzz.R

    Code
    .onLoad <- function(...){
        shiny::addResourcePath(
            "img",
            system.file("img", package = "myLeprechaunApp")
        )
    }

inst/run/app.R

  • app.R contains a file that looks like it would be used to run the application, but it’s not. This file contains a call to leprechaun::build(), then pkgload::load_all().

    Click on Code to view code in inst/run/app.R

    Code
    # do not deploy from this file
    # see leprechaun::add_app_file()
    leprechaun::build()
    
    pkgload::load_all(
        path = "../../",
        reset = TRUE,
        helpers = FALSE
    )
    
    run()

Build

Building leprechaun apps is similar to golem/R packages. New code is placed in the R/ folder, and application resources (CSS, SASS, JavaScript files) are added using one of the leprechaun::use_* functions:

More assets can be added using the leprechaun::use_packer() function.

Develop

The leprechaun::scaffold() defaults to a navbarPage(), but I’ll switch to a fluidPage() for this example.

After devtools::load_all() and devtools::document(), restarting and loading the package, I can run the application with run().

Figure 2: Initial run()

add_module()

Creating modules is simple with leprechaun::add_module().

  • The initial UI module:

    leprechaun::add_module("var_input")
     Creating R/module_var_input.R
    • Similar to golem, this creates functions for the UI and server portions of the module.
    #' var_input UI
    #' 
    #' @param id Unique id for module instance.
    #' 
    #' @keywords internal
    var_inputUI <- function(id){
        ns <- NS(id)
    
        tagList(
            h2("var_input"),
    
        )
    }
    • The initial server module:
    #' var_input Server
    #' 
    #' @param id Unique id for module instance.
    #' 
    #' @keywords internal
    var_input_server <- function(id){
        moduleServer(
            id,
            function(
                input, 
                output, 
                session
                ){
    
                    ns <- session$ns
                    send_message <- make_send_message(session)
    
                    # your code here
            }
        )
    }
    
    # UI
    # var_inputUI('id')
    
    # server
    # var_input_server('id')
    • Note the send_message <- make_send_message(session) in var_input_server(). I will show how this is used in the JavaScript section below.

The module contents are similar to golem, but instead of using the @noRd tag, these functions include @keywords internal (which can be used to document your package).

'_PACKAGE'

## usethis namespace: start
## usethis namespace: end
NULL

The code for the var_input and plot_display modules are below.

  • The R/module_var_input.R file:

    Click on Code to view code in R/module_var_input.R

    Code
    #' var_input UI
    #'
    #' @param id Unique id for module instance.
    #'
    #' @keywords internal
    #'
    #' @return shiny UI module
    #' @export var_inputUI
    #'
    #' @description A shiny Module.
    #'
    #' @importFrom shiny NS tagList selectInput
    #' @importFrom shiny sliderInput textInput
    var_inputUI <- function(id){
        ns <- shiny::NS(id)
        shiny::tagList(
        shiny::selectInput(
          inputId = ns("y"),
          label = "Y-axis:",
          choices = c(
            "IMDB rating" = "imdb_rating",
            "IMDB number of votes" = "imdb_num_votes",
            "Critics Score" = "critics_score",
            "Audience Score" = "audience_score",
            "Runtime" = "runtime"
          ),
          selected = "audience_score"
        ),
        shiny::selectInput(
          inputId = ns("x"),
          label = "X-axis:",
          choices = c(
            "IMDB rating" = "imdb_rating",
            "IMDB number of votes" = "imdb_num_votes",
            "Critics Score" = "critics_score",
            "Audience Score" = "audience_score",
            "Runtime" = "runtime"
          ),
          selected = "imdb_rating"
        ),
        shiny::selectInput(
          inputId = ns("z"),
          label = "Color by:",
          choices = c(
            "Title Type" = "title_type",
            "Genre" = "genre",
            "MPAA Rating" = "mpaa_rating",
            "Critics Rating" = "critics_rating",
            "Audience Rating" = "audience_rating"
          ),
          selected = "mpaa_rating"
        ),
        shiny::sliderInput(
          inputId = ns("alpha"),
          label = "Alpha:",
          min = 0, max = 1, step = 0.1,
          value = 0.5
        ),
        shiny::sliderInput(
          inputId = ns("size"),
          label = "Size:",
          min = 0, max = 5,
          value = 2
        ),
        shiny::textInput(
          inputId = ns("plot_title"),
          label = "Plot title",
          placeholder = "Enter plot title"
        )
        )
    }
    
    #' var_input Server
    #'
    #' @param id Unique id for module instance.
    #'
    #' @keywords internal
    #'
    #' @return shiny server module
    #' @export var_input_server
    #'
    #' @importFrom shiny NS moduleServer reactive
    var_input_server <- function(id){
        moduleServer(
            id,
            function(
                input,
                output,
                session
                ){
    
                    ns <- session$ns
                    send_message <- make_send_message(session)
    
                    # your code here
        return(
          list(
            "x" = shiny::reactive({
              input$x
            }),
            "y" = shiny::reactive({
              input$y
            }),
            "z" = shiny::reactive({
              input$z
            }),
            "alpha" = shiny::reactive({
              input$alpha
            }),
            "size" = shiny::reactive({
              input$size
            }),
            "plot_title" = shiny::reactive({
              input$plot_title
            })
            )
          )
            }
        )
    }
    
    # UI
    # var_inputUI('id')
    
    # server
    # var_input_server('id')
  • The R/module_plot_display.R file:

    • My plot_dispay module collects the data from var_input and creates the plot with the custom point_plot() function:

    Click on Code to view code in R/module_plot_display.R

    Code
    #' plot_display UI
    #'
    #' @param id Unique id for module instance.
    #'
    #' @return shiny UI module
    #' @export plot_displayUI
    #'
    #' @description A shiny Module.
    #'
    #' @importFrom shiny NS tagList tags
    #' @importFrom shiny plotOutput
    plot_displayUI <- function(id){
        ns <- shiny::NS(id)
        shiny::tagList(
        shiny::tags$br(),
        shiny::tags$blockquote(
          shiny::tags$em(
            shiny::tags$h6(
              "The code for this application comes from the ",
              shiny::tags$a("Building web applications with Shiny",
                href = "https://rstudio-education.github.io/shiny-course/"
              ),
              "tutorial"
            )
          )
        ),
        shiny::plotOutput(outputId = ns("scatterplot"))
        )
    }
    
    #' plot_display Server
    #'
    #' @param id Unique id for module instance.
    #'
    #' @keywords internal
    plot_display_server <- function(id, var_input){
        moduleServer(
            id,
            function(
                input,
                output,
                session
                ){
    
                    ns <- session$ns
                    send_message <- make_send_message(session)
    
                    # your code here
        movies <- myLeprechaunApp::movies
    
        inputs <- shiny::reactive({
          plot_title <- tools::toTitleCase(var_inputs$plot_title())
          list(
            x = var_inputs$x(),
            y = var_inputs$y(),
            z = var_inputs$z(),
            alpha = var_inputs$alpha(),
            size = var_inputs$size(),
            plot_title = plot_title
          )
        })
    
        output$scatterplot <- shiny::renderPlot({
          plot <- point_plot(
            df = movies,
            x_var = inputs()$x,
            y_var = inputs()$y,
            col_var = inputs()$z,
            alpha_var = inputs()$alpha,
            size_var = inputs()$size
          )
          plot +
            ggplot2::labs(
              title = inputs()$plot_title,
                x = stringr::str_replace_all(
                      tools::toTitleCase(
                          inputs()$x),
                        "_",
                      " "),
                y = stringr::str_replace_all(
                      tools::toTitleCase(
                          inputs()$y),
                      "_",
                    " ")) +
            ggplot2::theme_minimal() +
            ggplot2::theme(legend.position = "bottom")
        })
            }
        )
    }
    
    # UI
    # plot_displayUI('id')
    
    # server
    # plot_display_server('id')

After creating the modules, adding them to the UI (R/ui.R) and server (R/server.R) is straightforward.

  • The R/ui.R file:

    Code
    #' Shiny UI
    #'
    #' Core UI of package.
    #'
    #' @param req The request object.
    #'
    #' @import shiny
    #' @importFrom bslib bs_theme
    #'
    #' @keywords internal
    ui <- function(req) {
      fluidPage(
        theme = bs_theme(version = 5),
        assets(),
        h1("myLeprechaunApp"),
        # Begin new code -->
        shiny::sidebarLayout(
          shiny::sidebarPanel(
            var_inputUI("vars")
          ),
          shiny::mainPanel(
            plot_displayUI("plot")
          )
        )
        ## End new code <--
      )
    }
  • The R/server.R file:

    • The server also has the make_send_message() function in it by default (more on that below).

    Click on Code to view code in R/server.R

    Code
    #' Server
    #'
    #' Core server function.
    #'
    #' @param input,output Input and output list objects
    #' containing said registered inputs and outputs.
    #' @param session Shiny session.
    #'
    #' @noRd
    #' @keywords internal
    server <- function(input, output, session){
    
        send_message <- make_send_message(session)
    
      ## New code -->
       selected_vars <- var_input_server("vars")
    
       plot_display_server("plot", var_inputs = selected_vars)
       ## New code <--
    
    }

The other components of myLeprechaunApp were created using the standard usethis package development functions.

use_data_raw()

Adding data to a package

After calling usethis::use_data_raw('movies'), I can use system.file() to locate the file with the following code in data-raw/movies.R:

## code to prepare `movies` dataset goes here
pth <- system.file('extdata/movies.RData', package = 'myLeprechaunApp')
load(pth)
usethis::use_data(movies, overwrite = TRUE)

use_r()

  • usethis::use_r() created R/utils_plot_display.R to hold the point_plot() function

    Click on Code to view code in R/utils_plot_display.R

    Code
    #' Plot points (shiny)
    #'
    #' @param df input dataset (tibble or data.frame)
    #' @param x_var x variable
    #' @param y_var y variable
    #' @param col_var color variable
    #' @param alpha_var alpha value
    #' @param size_var size value
    #'
    #' @return plot object
    #' @export point_plot
    #'
    #' @importFrom ggplot2 ggplot aes geom_point
    #'
    #' @examples
    #' \donttest{
    #' load(
    #'   list.files(
    #'     system.file("extdata", package = "myLeprechaunApp"),
    #'    pattern = "movies",
    #'    full.names = TRUE)
    #'    )
    #' point_plot(df = movies,
    #'   x_var = "critics_score",
    #'   y_var = "imdb_rating",
    #'   col_var = "critics_rating",
    #'   alpha_var = 1/3,
    #'   size_var = 2)
    #' }
    point_plot <- function(df, x_var, y_var, col_var, alpha_var, size_var) {
        ggplot2::ggplot(data = df,
          ggplot2::aes(x = .data[[x_var]],
              y = .data[[y_var]],
              color = .data[[col_var]])) +
          ggplot2::geom_point(alpha = alpha_var, size = size_var)
    
    }

Now I can run devtools::load_all(), devtools::document(), restart and load the package, then run()

Figure 3: run myLeprechaunApp

inst/

leprechaun uses the inst/ folder similar to the golem framework, but instead of only loading the files in inst/app/www, leprechaun apps include four sub-folders that are ready at application runtime.

packer

To demonstrate how the make_send_message() function works, I’ll walk through the JavaScript example from the package website.

  • Run packer::scaffold_leprechaun()

    Click on Code to view the output from packer::scaffold_leprechaun()

    ── Scaffolding leprechaun ──────────────────────────────────────────────
     Initialiased npm
     webpack, webpack-cli, webpack-merge installed with scope "dev" 
     Added npm scripts
     Created srcjs directory
     Created srcjs/config directory
     Created webpack config files
    
    ── Adding files to .gitignore and .Rbuildignore ──
    
     Setting active project to '/Users/mjfrigaard/projects/myLeprechaunApp'
     Adding '^srcjs$' to '.Rbuildignore'
     Adding '^node_modules$' to '.Rbuildignore'
     Adding '^package\\.json$' to '.Rbuildignore'
     Adding '^package-lock\\.json$' to '.Rbuildignore'
     Adding '^webpack\\.dev\\.js$' to '.Rbuildignore'
     Adding '^webpack\\.prod\\.js$' to '.Rbuildignore'
     Adding '^webpack\\.common\\.js$' to '.Rbuildignore'
     Adding 'node_modules' to '.gitignore'
    
    ── Scaffold built ──
    
     Run `bundle` to build the JavaScript files
     Run `leprechaun::use_packer()`
  • Run leprechaun::use_packer()

    leprechaun::use_packer()
     Creating inst/dev/packer.R
     Adding 'packer' to Suggests in DESCRIPTION
    ! This requires `leprechaun::build()` or the `leprechaun::build_roclet`
  • Run leprechaun::build()

    leprechaun::build()
     Running packer.R
     Bundled   

Now I can see what new files have been added to the package/app.

  • In the inst/dev/ folder:

    • I can see the packer.R file has been added
    inst/dev/
          └── packer.R
    
    1 directory, 1 file

    Click on Code to view the output from packer.R

    Code
    #' Bundle for Prod
    #' 
    #' Bundles packer using packer.
    packer_bundle <- function(){
        has_packer <- requireNamespace("packer", quietly = TRUE)
    
        if(!has_packer){
            warning(
                "Requires `packer` package: `install.packages('packer')`\n", 
                "Skipping.",
                call. = FALSE
            )
            return()
        }
    
        packer::bundle()
    }
    
    packer_bundle()
  • In the srcjs/ folder:

    • I can see how modules/message.js and index.js create the alert with Shiny.addCustomMessageHandler
    srcjs/
        ├── config
           ├── entry_points.json
           ├── externals.json
           ├── loaders.json
           ├── misc.json
           └── output_path.json
        ├── index.js
        └── modules
            └── message.js

    The JavaScript in modules/message.js and index.js

    // srcjs/modules/message.js
    export const message = (msg) => {
      alert(msg);
    }
    // srcjs/index.js
    import { message } from './modules/message.js';
    import 'shiny';
    
    // In shiny server use:
    // session$sendCustomMessage('show-packer', 'hello packer!')
    Shiny.addCustomMessageHandler('show-packer', (msg) => {
      message(msg.text);
    })

To use the JS message scripts in srcjs/, I add the following to R/server.R:

  • In R/server.R

        send_message <- make_send_message(session)
        send_message("show-packer",
                      text = "this is a message from your server()")

After running devtools::load_all() and devtools::document(), the application loads with an alert:

Figure 4: send_message()

I can also include messages from modules.

  • In R/module_plot_display.R

            send_message <- make_send_message(session)
            send_message("show-packer",
              text = "this is a message from your plot_display module")

Figure 5: send_message() (module)

Read more about sending JavaScript messages here on the shiny website.

img/

I’ll demonstrate how to use the inst/ folder by adding an image to the application.

  • Assume I want to add leprechaun.jpg to my UI. I start by adding the file to inst/img/:

    inst/
      └── img/
           └── leprechaun.jpg <- new image file!
  • Then I add the img/ path to the code to UI:

    ui <- function(req) {
      fluidPage(
        theme = bs_theme(version = 5),
        assets(),
        h1("myLeprechaunApp"),
        shiny::sidebarLayout(
          shiny::sidebarPanel(
            var_inputUI("vars")
          ),
          shiny::mainPanel(
            # new image
            shiny::tags$img(src = "img/leprechaun.jpg"),
            plot_displayUI("plot")
          )
        )
      )
    }

Once again, run devtools::load_all() and devtools::document(), restarting and loading the package, then run the application with run()

Figure 6: Adding images to inst/img/

Sass

leprechaun also has helper functions for adding additional resources (or assets) to an application. I’ll work through the SASS example from the website below.

To add a Sass file, I can use leprechaun’s use_sass() function.

  • Run leprechaun::use_sass() (no arguments):

    leprechaun::use_sass()
    • This will add files to assets/ and dev/ and I see the following messages:
     Creating scss
     Creating inst/dev/sass.R
     Adding 'sass' to Suggests in DESCRIPTION
     Adding '^scss$' to '.Rbuildignore'
    ! This requires `leprechaun::build()` or the `leprechaun::build_roclet`
    • Below are the new files in inst/dev/ and sass/:
    inst/
        ├── scss/
           ├── _core.scss
           └── main.scss
        └── dev/
            └── sass.R

The scss/ folder is created by leprechaun::use_sass(), and it includes _core.scss and main.scss.

  • _core.scss: the original file is below

    html{
        .error {
            color: red
        }
    }
  • I will change the color: from red to green (#38B44A) using $accent: #38B44A;

    $accent: #38B44A;
    
    html{
        h1 {
            color: $accent;
        }
    }
  • Then save this file and run leprechaun::build()

    leprechaun::build()
     Running packer.R
     Bundled       
     Running sass.R
dev/
  • The inst/dev/sass.R file contains a sass_build() function

    • sass_build() looks in the scss/ folder for main.scss and creates the inst/assets/style.min.css file.

    Click on Code to view code in inst/dev/sass.R

    Code
    #' Build CSS
    #'
    #' Build the sass
    sass_build <- function() {
      has_sass <- requireNamespace("sass", quietly = TRUE)
    
      if (!has_sass) {
        warning(
          "Requires `sass` package: `install.packages('sass')`\n",
          "Skipping.",
          call. = FALSE
        )
        return()
      }
    
      output <- sass::sass(
        sass::sass_file(
          "scss/main.scss"
        ),
        cache = NULL,
        options = sass::sass_options(
          output_style = "compressed"
        ),
        output = "inst/assets/style.min.css"
      )
      invisible(output)
    }
    
    sass_build()

Once again, I run devtools::load_all(), devtools::document(), install and restart, then load the package and run()

Figure 7: run myLeprechaunApp with new Sass

assets/

How does leprechaun::build() work?

The assets/ folder contains the files generated by the .R scripts in the dev/ folder.

  • The contents of the inst/dev/ folder:

    inst/dev/
          ├── packer.R
          └── sass.R
    
    1 directory, 2 files
  • The contents of the inst/assets/ folder:

    inst/assets/
            ├── index.js
            └── style.min.css
    
    1 directory, 2 files
  • inst/dev/sass.R creates inst/assets/style.min.css and inst/dev/packer.R creates inst/assets/index.js

“Do not call this function from within the app. It helps build things, not run them.” - build.md guide

check serveAssets()

After running leprechaun::use_sass() and leprechaun::build() (which adds the scss/ folder and the .R script in inst/dev/), I can re-check the serveAssets() function:

serveAssets()
[[1]]
List of 10
 $ name      : chr "myLeprechaunApp"
 $ version   : chr "0.0.0.9000"
 $ src       :List of 1
  ..$ file: chr "."
 $ meta      : NULL
 $ script    : Named chr "assets/index.js"
  ..- attr(*, "names")= chr "file"
 $ stylesheet: Named chr [1:2] "assets/style.min.css" "html/R.css"
  ..- attr(*, "names")= chr [1:2] "file" "file"
 $ head      : NULL
 $ attachment: NULL
 $ package   : chr "myLeprechaunApp"
 $ all_files : logi TRUE
 - attr(*, "class")= chr "html_dependency"

This shows me stylesheet has been updated with "assets/style.min.css" and script has been updated with "assets/index.js" (these files are loaded into the application when it runs).

Use

Running leprechaun apps:

When I initially create a new leprechaun package with leprechaun::scaffold(), I can run the application after a few quick steps:

  1. devtools::load_all()

  2. devtools::document()

  3. Install and restart (optional)

  4. run()

devtools::load_all()
devtools::document()
# install and restart
library(myLeprechaunApp)
run()

Figure 8: run myLeprechaunApp

App package scripts

The output above shows that–unlike golem apps–leprechaun includes the functions in the R/ folder as part of the myLeprechaunApp package.

App files:

  • R/: After the initial setup, the R/ folder of a leprechaun app contains standard ui.R, server.R files, as well as the run.R function for running the app.

    myLeprechaunApp/
          └── R/
              ├── _disable_autoload.R
              ├── assets.R
              ├── input-handlers.R
              ├── leprechaun-utils.R
              ├── run.R
              ├── server.R
              ├── ui.R
              └── zzz.R
    
          1 directory, 8 files
    • The additional files are specific to the leprechaun framework and workflow.

Configure:

leprechaun app configuration files use the config package (similar to golem). Unlike the golem package, it’s not assumed I’ll be using a config.yml file, but I can easily add one with leprechaun::use_config().

  • use_config() adds a inst/config.yml and R/config.R

  • The default value in the config.yml files is production: true, which can be read using config_read() in R/config.R.

    config_read()
    $production
    [1] TRUE

Workflow:

  • The inst/ folder contains various sub-folders for including external app resources (images, SASS, CSS, JavaScript, etc.).

    myLeprechaunApp/
        └── inst/
              ├── assets/
              ├── dev/
              ├── img/
              └── run/
                  └── app.R
    
          5 directories, 1 file
  • leprechaun apps are packages, so the inst/ folders are available to the application at runtime (which I can find using system.file()).

    • Below I’ve passed the output from system.file(".", package = "myLeprechaunApp") to fs::dir_tree() to view it’s contents:
    Code
    ├── DESCRIPTION
    ├── INDEX
    ├── Meta/
       ├── Rd.rds
       ├── data.rds
       ├── features.rds
       ├── hsearch.rds
       ├── links.rds
       ├── nsInfo.rds
       └── package.rds
    ├── NAMESPACE
    ├── R/
       ├── myLeprechaunApp
       ├── myLeprechaunApp.rdb
       └── myLeprechaunApp.rdx
    ├── assets/
       ├── index.js
       └── style.min.css
    ├── data/
       ├── Rdata.rdb
       ├── Rdata.rds
       └── Rdata.rdx
    ├── dev/
       ├── packer.R
       └── sass.R
    ├── extdata/
       └── movies.RData
    ├── help/
       ├── AnIndex
       ├── aliases.rds
       ├── myLeprechaunApp.rdb
       ├── myLeprechaunApp.rdx
       └── paths.rds
    ├── html/
       ├── 00Index.html
       └── R.css
    ├── img/
       └── leprechaun.jpg
    └── run/
        └── app.R
    • I can see the inst/ folders and files I’ve created are available to myLeprechaunApp at runtime:
    Code
    ├── DESCRIPTION
    ├── NAMESPACE
    ├── assets/
       ├── index.js
       └── style.min.css
    ├── dev/
       ├── packer.R
       └── sass.R
    ├── extdata/ 
       └── movies.RData
    └── img/
          └── leprechaun.jpg

Recap

leprechaun delivers on its promise to be a ‘leaner and smaller’ version of golem. Most of the features in golem are also accessible in leprechaun. Including multiple inst/ sub-folders makes adding assets to the application easier, and leprechaun has a long list of use_* functions for including Sass, CSS, HTML, and JavaScript. The package website has examples for getting started and adding multiple resources, but unfortunately the function Reference had limited documentation.

leprechaun doesn’t come with any testing functions, although this can be done using testthat and shinytest2 (just as we would with a standard R package).

For the next (and last) post in this series, I will build a shiny application using the rhino package.