19 Overlapping histograms
19.1 Description
Overlapping histograms allow us to compare distributions across the groups of a categorical (or ordinal) variable.
19.2 Set up
PACKAGES:
Install packages.
show/hide
install.packages("palmerpenguins")
library(palmerpenguins)
library(ggplot2)
DATA:
The penguins
data.
show/hide
<- palmerpenguins::penguins
penguins glimpse(penguins)
#> Rows: 344
#> Columns: 8
#> $ species <fct> Adelie, Adelie, Adelie…
#> $ island <fct> Torgersen, Torgersen, …
#> $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, …
#> $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, …
#> $ flipper_length_mm <int> 181, 186, 195, NA, 193…
#> $ body_mass_g <int> 3750, 3800, 3250, NA, …
#> $ sex <fct> male, female, female, …
#> $ year <int> 2007, 2007, 2007, 2007…
::::
19.3 Grammar
CODE:
Create labels with
labs()
Initialize the graph with
ggplot()
and providedata
Map
flipper_length_mm
to thex
axis andspecies
tofill
Set
alpha
to2/3
insidegeom_histogram()
show/hide
<- labs(
labs_ovrlp_hist title = "Adult foraging penguins",
x = "Flipper length (mm)",
fill = "Species")
<- ggplot(data = penguins,
ggp2_ovrlp_hist aes(x = flipper_length_mm,
fill = species)) +
geom_histogram(alpha = 2/3)
+
ggp2_ovrlp_hist labs_ovrlp_hist
Experiment with different binwidth
s when comparing distributions across groups.
GRAPH:
Histograms work by dividing the variable provided to x
into bins and counting the number of observations in each bin.